Two New Ways to Build Shells Rapidly (1) Slurry + Modified Stucco With An Amorphous Mineral Silicate (2) Brush-on

> Dan McGuire and Eric Hellstrom UW-Whitewater - Art Department UW-Madison – Materials Science

Presented at the Southern Conference on Cast Iron Art Birmingham, AL - April 11-14, 2007

Acknowledgements

- WiSys
- UW-Whitewater
 - Research and Sponsored Program
 - Center for Innovation and Business Development
- Wisconsin Center for Technology Transfer
- Minco Inc.
- Shelmet Precision Casting
- Signicast Corp.
- Walworth Foundry Inc.
- Wisconsin Precision Casting Corp.
- Sloss Furnaces
- Investment Casting Institute
- Others
 - Justin McGuire
 - Humberto Melgarejo

Two ways to speed up shell building for investment casting

- (1) Slurry + stucco traditional method with modified stucco
 - Rainfall (sieve method)
 - Fluidized bed
- (2) Brush-on
 - Paint face coat on pattern
 - Paint on backup coats to achieve desired thickness
- From pattern to solid metal in < 8 hours
- Has been used for
 - Non-ferrous (aluminum, brass, bronze, copper)
 - Ferrous (cast iron, stainless steel)

Method 1 - Slurry + Modified Stucco

Video of slurry + modified stucco process

- What was done in the production run in the industrial foundry
- 7 stucco coats + seal coat
- Shells were built in 8 h
 - 2 different slurries most schools only use 1 slurry for all coats
 - 3 different modified stuccos
- Autoclaved to remove wax
- Poured stainless steel
- For video got to <u>www.FoundrySolutions.net</u> video – production run

Only modify the stucco

- Add amorphous mineral silicate adsorbent to stucco → modified stucco
- Use:
 - With standard slurry recipes
 - With standard or custom stucco recipes
 - With rainfall and fluidized bed processes

Only one minor change to standard slurry + stucco rainfall shell process

- Coat pattern with standard slurry
- Apply modified stucco
- Remove small amount of stucco after 15 to 60 min
- Repeat to build up desired shell thickness
- Time between coats can be as short as 20 min
- Note: Adsorbent is neutral does not change slurry pH

Why remove stucco material?

- Initially stucco is very uniform
- After about 5-10 minutes of drying, patches of stucco begin to shed

Stucco begins to fall off after 5 – 10 minutes

Why remove stucco material?

- Initially stucco is very uniform
- After about 5-10 minutes of drying, patches of stucco begin to shed
- Remove stucco with air, tapping, brushing, vibration
- If loose stucco is not removed, rewetting peels off loose stucco causing delamination

Remove layer of loose stucco with air or mechanical means

Surface is smooth and uniform after loose stucco is removed

Proposed mechanism how adsorbent speeds up the process

Surface appears to be mainly adsorbent

Proposed mechanism how adsorbent speeds up the process

Proposed mechanism how adsorbent speeds up the process

No changes to standard slurry + stucco fluidized bed shell process

- Coat pattern with standard slurry
- Apply modified stucco
 - Fluidized bed removes loose stucco accomplishes stucco removal that is done separately with rainfall method
- Repeat to build up desired shell thickness
- Time between coats can be as short as 20 min
- Note: Adsorbent is neutral does not change slurry pH
- Proposed mechanism adsorbent allows water to evaporate faster than from traditional stucco

Comments 1 – slurry + stucco

- Apply desired number of layers; use adsorbent in all stucco layers
- Shell is ready to be autoclaved or flash fired when seal-coat is dry
- Adsorbent is neutral does not change pH of slurry
- Adsorbent is non-toxic and does not generate toxic waste
- Stucco + adsorbent mix has excellent shelf life
- May be able to reuse loose stucco that is removed

Can be used with deep cores

Metal surface is clean (304 SS) with no burn in - excellent dimensional tolerances

Comments 2 – slurry + stucco

- Have cast AI, Cu, brass, bronze, cast iron, SS
- No permeability problems with ferrous or non-ferrous alloys
 - no \$ to try gold and platinum yet
- Works with rainfall and fluidized beds
- Small amounts of Na, K, and Ca in adsorbent; they do not appear to present a problem
- Initial bowing problem when pouring adding layers eliminated problem

Comments 3 – slurry + stucco

 Mechanical properties of shell are comparable or better than standard slurry + stucco

Sample	MOR (psi)	MOE (psi)
Green		
Std-60	783 ± 22	100 ± 8
Mod-60	814 ± 25	70 ± 7
Hot wet (immediately after autoclaving)		
Std-60	370 ± 18	69 ± 8
Mod-60	371 ± 16	44 ± 5
Fired (at room temperature after 1800°F / 2.5h)		
Std-60	274 ± 21	35 ± 4
Mod-60	572 ± 39	65 ± 7

Chris Whitehouse, Minco

Summary – slurry + modified stucco

- Build a shell in 4-8 h
- Use standard slurry and stucco recipes
- Add adsorbent to stucco
- Remove loose stucco before rewetting (rainfall method)
- Use standard autoclaving, burn-out, and pouring schedules

General information

- Add hanger for all pieces can hang pieces to get good air flow
- Need high 360°air flow for both methods
- Wax patterns temperature changes expand or contract wax, which can crack the shell

Method 2 - Brush-on

Video of brush-on process

- What you will see in the video
- Prepare and apply face coat
- Apply 3 backup coats
- Burnout
- Ready to pour
- For video go to <u>www.FoundrySolutions.net</u> – video – Brush-on

Brush-on process

- Face coat and backup coats have the consistency of cake frosting
- Add accelerant to face coat and backup coat mixtures just before using
- Face coat and backup dry to touch in ~5 min
- Backup coat can be applied in 1 h
- Add backup coat each hour to achieve desired thickness – shell should be about 3/8" thick
- Ready for burn out 1 h after final backup coat
- Mechanism accelerant changes pH, which causes gelling. Air flow removes water.

Characteristics of brush-on

- Face coat and backup mixtures have long shelf life they do not settle or harden
- No dust
- Excellent surface detail
- Composition of backup coat improves heat retention
 allows multiple metal pours
- Can be used for ferrous and non-ferrous alloys
- Excellent mechanical properties can eliminate need for core pins
- Easy to remove shell after pouring
- Shell material is non-toxic and is not hazardous no safety or disposal problems

Notes and new knowledge from the Sloss workshop (1)

- Can make shells under non-ideal conditions – had not worked in sun and wind before
- Ideal conditions
 - No direct sun (no snow or ice)
 - No wind when applying ceramic
 - Lots of air flow when drying each face coat
 - Air circulation is best if the piece is hung next best is inverting piece on its pour cup

Notes (2)

- Properly prepared pattern surface is vital to get face coat to stick
 - How surface is prepared depends on pattern material (wax, paper, cloth, food)
 - When in doubt seal/coat surface with shellac
- Can adjust consistency of face and backup coats with water
- Can get face coat fissures if the consistency is too runny – consistency of molasses is about the runniest you should attempt

Notes (3)

- Apply thick enough layer of face coat to cover pattern. Face coat has a tendency to not cover pattern at first.
- Daub face coat and backup onto pattern and push it around (the DT technique) – minimize normal brush stroking
- Don't spend too much time trying to fill small holes that appear in the face coat – touch them up a few minutes after the face coat is applied.
- Apply face coat to entire pattern including pour cup, sprue, vent, gates – face coat material sticks to pattern better than backup material.

Notes (4)

- Each backup coat should be thicker than face coat (about 2X thicker). About 1/8" thick per layer.
- Adjust consistency of backup for ambient conditions
- Daub backup coat on previous layer use DT technique minimize stroking
- Final shell thickness should be about 3/8" measure at pour cup.
- The pour cup, sprues, gates, vents (etc.) need the same attention to detail as the pattern. Good pour system = good casting.

Notes (5)

- Inspect shell before burnout
 - Surface should be smooth and crackfree
 - Small cracks can be touched up with more backup – dry at least 30 min before burnout
- Cracks after burnout can be repaired with glaumo (thick consistency backup with accelerant)

Notes (6)

- Hybrid technique new at Sloss workshop
 - Face coat slurry + stucco
 - Backup coats Brush-on
- DO NOT DIP BRUSH-ON INTO SLURRY TANK – IT COULD CAUSE THE TANK TO GEL
- Do not put anything that has come in contact with the accelerant into the container of premixed face coat or backup material. (Don't double dip with your brush.)

Overall summary

- Two simple new methods to get from pattern to solid metal in <8 h
- Slight modification of standard slurry + stucco method
- Entirely new brush-on method

Thanks to the following people for help with the Brush-on workshop at Sloss Furnaces, Birmingham, AL Apr. 12, 2007

- Justin
- Chris
- Erica
- Greg
- Jeremy
- Cyndi
- Won-Seok
- Brush-on guinea pigs